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Frank Secretain

Math 20

Test 3

110 minutes

Pencil, pen, eraser, calculator

Be neat. Show your work where needed. Box final answers.

3 questions worth 20 marks
20% of final grade



Formula Sheet

Arithmetic Series Geometric Series Binomial Theorem
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Line equation Quadratic formula Definition of the derivative

y=azx+b Lo 0% Vb2 — 4ac if(a:) _ oy et AT) — f(2)

2a dx Az—0 Ax

Rules of differentiation

d d d

%(f(x)g(l')) = f(ﬂﬁ)%(g(?ﬁ)) + g(w)%(f(ﬂf)) (product rule)

i f(l') _ g(:l?)%(f(l’)) - f(x)d;‘i;(g(x)) (quotient ru|e)

dz \ g(z) (9(x))?

d _d d (chain rule)

—(f(9(@)) = —(F9(@))) - (9(x))
Derivatives of select functions Integrals of select functions

: 2 gt n#F -1

i(mn) — anx™ ! / ax"dr = ntl (polynomials)

dx In(|z)) n=-1

d . 1

—x(sm(x)) = cos(x) sin(ax)dr = —acos(aa:)

1 .
di(cos(g:)) = —sin(z) cos(ax)dr = asin(aw) (trigonometry)

d x xX X _ 1 xT
%(a ) =a”In(a) a dx_ln(a a
d ] (exponentials)
%(Zogax) In(a) In(x)dx = zin(z) — z
Taylor series expansion Integration by parts
> f£(n)
f(z) = Z ! n('%) (. — )" /udv = Uuv — /vdu

n=0



(5 marks) Given 100 meters of fencing determine the maximum area of the proposed enclosure..




(2 marks each) Integrate the following:
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(5 marks) Determine the shaded area of the two functions given in the legend.
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(5 marks) Given 100 meters of fencing determine the maximum area of the proposed enclosure..
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(2 marks each) Integrate the following:
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(5 marks) Determine the shaded area of the two functions given in the legend.
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(5 marks) Determine the shaded area of the two functions given in the legend.
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(5 marks) Determine the shaded area of the two functions given in the legend.
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