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Formula Sheet

Arithmetic Series Geometric Series Binomial Theorem
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Line equation Quadratic formula Definition of the derivative
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Rules of differentiation
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(2 marks each) Determine the 100th number in the sequence and the sum from the first number to the
100th number for each of the following series.

-25.2,-37.8, -56.7, ...

-25.2,-37.8, -50.4, ...



(4 marks) Use an infinite series to determine the area of the shaded area in terms of lengths of “a” and
“b” given the below figure. Set up an infinite series by adding the appropriate areas and then sum to
infinity.
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(2 marks each) Take the derivative with respect to “x” of the following y(x) functions.
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(2 marks each) Take the derivative with respect to “z” of the following g(z) functions.

g = (22° + ) + 3sin(z)

g = (sin((22° + 2)® + 3sin(x)))?



(2 marks each) Take the derivative with respect to “z” of the following h(z) functions.

2h
§+h22:sin(h+z—x2)+1

h
2= (sin(h? + z — 2%) +1)**



(5 marks) Determine the tangent line at x=1 for the following function. Plot the tangent line on the plot.
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(2 marks each) Determine the 100th number in the sequence and the sum from the first number to the
100th number for each of the following series.

-25.2, -37.8, -56.7, ...
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(4 marks) Use an infinite series to determine the area of the shaded area in terms of lengths of “a” and
“b" given the below figure. Set up an infinite series by adding the appropriate areas and then sum
infinity.
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(2 marks each) Take the derivative with respect to “x” of the following y(x) functions.
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(2 marks each) Take the derivative with respect to “z" of the following g(z) functions.

A

g = (22% + 2)? + 3sin(x)
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(2 marks each) Take the derivative with respect to “z” of the following h(z) functions.
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(5 marks) Determine the tangent line at x=1 for the following function. Plot the tangent line on the plot.
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