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Formula Sheet

Arithmetic Series Geometric Series Binomial Theorem
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Line equation Quadratic formula Definition of the derivative
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(2 marks each) Determine the 100th number in the sequence and the sum from the first number to the
100th number for each of the following series.

-5,-3.5,-2,-0.5, ...

100, 99, 98.01, 97.0299, ...



(4 marks) Use an infinite series to determine the lengths of “a” and “b” given the below figure. You may
verify your answer using trigonometry, however, no marks will be given for a trigopnometric solution. Set
up an infinite series by adding the appropriate lengths to determine “a” and “b”.
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(2 marks each) Take the derivative with respect to “x” of the following functions.

S
2

5
y(z) = §x2 + 2z

y(x) = 22° cos(z) + ax”



y(z) = 3(x* — 1)%sin(2?) + «




y? + sin(z) = x(y — 1)° + 3

2?1 = 3[Sin (32 - 1?) —{—xr



(5 marks) Determine the tangent line at x=0 for the following function. Plot the tangent line on the plot.

y(z) = —2° + 2 +1




(5 marks) Suppose you are dragging a mass (m) across the floor by the use of a rope and pulley, as
shown in the below figure. If you are pulling the rope at a rate of 1 m/s how fast is the block sliding
across the floor when at the position shown in the figure?
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100th number for each of the following series.

(2 marks each) Determine the 100th number in the sequence and the sum from the first number to the

8, 8.5, 2, 0.5, ...
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(4 marks) Use an infinite series to determine the lengths of “a” and “b” given the below figure. You may
verify your answer using trigonometry, however, no marks will be given for a trigonometric solution. Set

up an infinite series by adding the appropriate lengths to determine “a” and “b”.
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(4 marks) Use an infinite series to determine the lengths of “a” and “b” given the below figure. You may
verify your answer using trigopnometry, however, no marks will be given for a trigonometric solution. Set
up an infinite series by adding the appropriate lengths to determine “a” and “b”.
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(2 marks each) Take the derivative with respect to “x” of the following functions.
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y? + sin(z) = z(y — 1) + B
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(5 marks) Determine the tangent line at x=0 for the following function. Plot the tangent line on the plot
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(5 marks) Suppose you are dragging a mass (m) across the floor by the use of a rope and pulley, as
shown in the below figure. If you are pulling the rope at a rate of 1 m/s how fast is the block sliding
across the floor when at the position shown in the figure?
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