

|                            |                                                                                                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instructor:                | Frank Secretain                                                                                                                                                                                                                                                                                          |
| Course:                    | Math 101                                                                                                                                                                                                                                                                                                 |
| Assessment:                | Final Test                                                                                                                                                                                                                                                                                               |
| Time allowed:              | 110 minutes                                                                                                                                                                                                                                                                                              |
| Devices allowed:           | Pencil, pen, eraser, calculator                                                                                                                                                                                                                                                                          |
| Marks allocated:           | 5 questions worth 25 marks                                                                                                                                                                                                                                                                               |
| Percentage of final grade: | 20% of final grade                                                                                                                                                                                                                                                                                       |
| Notes from instructor:     | <p>Be neat. Show your work where needed. Box final answers.<br/>Print your test and write answers in the space provided.<br/>If you can't print, then use blank paper and copy the question<br/>number as it is written on the test and answer in the space<br/>provided as if the test was printed.</p> |
| Questions:                 | Give me a call on teams.                                                                                                                                                                                                                                                                                 |
| Submission:                | <p>At the end of your test: scan or take pictures of your test pages in<br/>order. Compile email and send it to:</p> <p><b>math101@franksecretain.ca</b><br/><b>by 2:30 pm on December 17, 2020</b></p>                                                                                                  |

## Formula Sheet

### Order of Operations

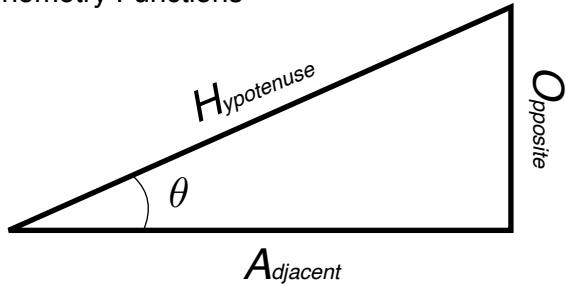
$$ac + bc = c(a + b)$$

exponents

$$a^n a^m = a^{n+m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$


$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

radicals

$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

### Trigonometry Functions



$$\sin(\theta) = \frac{O}{H} \quad \sin^{-1}\left(\frac{O}{H}\right) = \theta$$

$$\cos(\theta) = \frac{A}{H} \quad \cos^{-1}\left(\frac{A}{H}\right) = \theta$$

$$\tan(\theta) = \frac{O}{A} \quad \tan^{-1}\left(\frac{O}{A}\right) = \theta$$

### Pythagoras Theorem

$$H^2 = O^2 + A^2$$

### Relative Velocity

$$\vec{v}_{\frac{A}{C}} = \vec{v}_{\frac{A}{B}} + \vec{v}_{\frac{B}{C}}$$

Linear equations (Cramer's rule)

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Forms of a 1st order polynomial

$$y = ax + b$$

Forms of a 2nd order polynomial

$$y = ax^2 + bx + c$$

$$y = a(x - h)^2 + k$$

$$y = (x - m)(x - n)$$

Unit Conversions

angles

$$2\pi = 6.28 \text{ rad} = 360^\circ$$

mass

$$1 \text{ kg} = 2.2 \text{ lbs.}$$

lengths

$$1 \text{ mile} = 1.6 \text{ km}$$

$$1 \text{ inch} = 2.54 \text{ cm}$$

$$1 \text{ m} = 3.3 \text{ ft}$$

volumes

$$1 \text{ gallon} = 3.78 \text{ Litres}$$

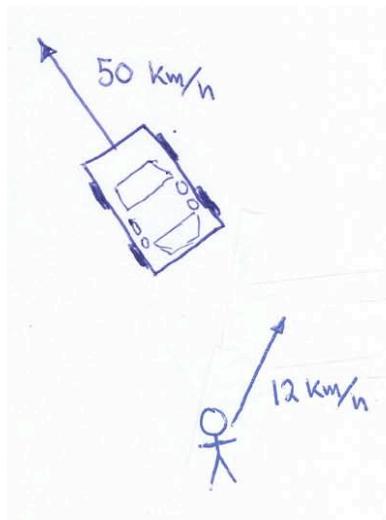
(2 marks) Solve the each expression and keep the correct number of significant digits.

$$14.5 + 0.12 / 0.0053$$

$$1901 + 0.01 / 0.0001$$

let:

$$15.6\tau = \Lambda \quad 4.6\gamma = 3.1\beta$$


$$0.087\epsilon = 2.3\Lambda \quad 3.1\theta = 2.1\Phi$$

(4 marks) Convert each of the numbers to the stated units.

$$3.0 \frac{\Lambda}{\Phi} \rightarrow \frac{\epsilon}{\Phi}$$

$$1.2 \frac{\tau^2}{m\theta} \rightarrow \frac{\Lambda^2}{\Phi}$$

(5 marks) A car is driving at 50 km/h at 45 degrees West of North relative to the ground and you are running at 12 km/h at 60 degree North of East relate to the ground. How fast is the car driving away relative to you.



(9 marks) Solve for a in the expressions:

$$\frac{b-4}{a-2} = \eta_o + b$$

$$\frac{7a - b(a+2)}{2} - 1 = a$$

$$\frac{1}{a}+\frac{2(a-1)}{7a}=2$$

$$\frac{2\sin(4a+b)}{b+2}=7$$

(5 marks) You bought 8 apples, 2 bananas and 10 carrots and paid \$35. From that you returned 2 apples, 2 bananas and 2 carrots which gave you \$10. You still needed more money so you returned 1 apple and 3 carrots which gave you \$5. How much was the apple?

(2 marks) Solve the each expression and keep the correct number of significant digits

$$\begin{aligned}
 14.5 + 0.12 / 0.0053 &= 14.5 + 22.6415 \\
 &= 37.1415 \\
 &= 37
 \end{aligned}$$

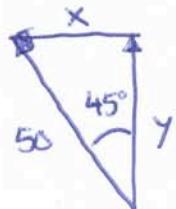
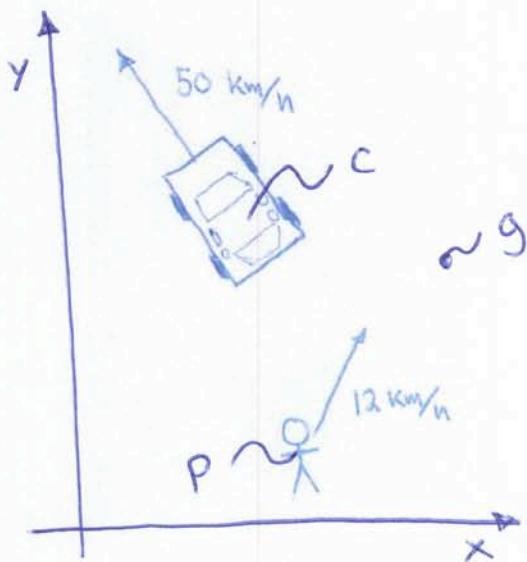
$$\begin{aligned}
 1901 + 0.01 / 0.0001 &= 1901 + 100 \\
 &= 2001 \\
 &= 2.0 \times 10^3
 \end{aligned}$$

let:

$$15.6\tau = \Lambda \quad 4.6\gamma = 3.1\beta$$

$$0.087\epsilon = 2.3\Lambda \quad 3.1\theta = 2.1\Phi$$

(4 marks) Convert each of the numbers to the stated units.



$$3.0 \frac{\Lambda}{\Phi} \rightarrow \frac{\epsilon}{\Phi}$$

$$3.0 \cancel{\frac{\Lambda}{\Phi}} \left( \frac{0.087 \epsilon}{2.3 \Lambda} \right) \quad \boxed{= 0.11 \frac{\epsilon}{\Phi}}$$

$$1.2 \frac{\tau^2}{m\theta} \rightarrow \frac{\Lambda^2}{\Phi}$$

$$1.2 \cancel{\frac{\gamma^2}{m\theta}} \left( \frac{\Lambda}{15.6 \gamma} \right)^2 \left( \frac{1000 \cancel{m\theta}}{\Phi} \right) \left( \frac{3.1 \Phi}{2.1 \cancel{\Phi}} \right) \quad \boxed{= 7.3 \frac{\Lambda^2}{\Phi}}$$

(5 marks) A car is driving at 50 km/h at 45 degrees West of North relative to the ground and you are running at 12 km/h at 60 degree North of East relate to the ground. How fast is the car driving away relative to you.



$$x = 50 \sin(45) = 35.4$$

$$y = 50 \cos(45) = 35.4$$



$$x = 12 \cos(60) = 6$$

$$y = 12 \sin(60) = 10.4$$

$$\vec{V}_{c/p} = \vec{V}_{c/g} + \vec{V}_{g/p}$$

$$V_{g/p} = -V_{p/g}$$

$$\vec{V}_{c/g} = -35.4 \hat{x} + 35.4 \hat{y}$$

$$-V_{p/g} = -6 \hat{x} - 10.4 \hat{y}$$

$$\vec{V}_{c/p} = -41.4 \hat{x} + 25.0 \hat{y}$$

$$|\vec{V}_{c/p}| = \sqrt{(-41.4)^2 + (25.0)^2} = 48.3 \text{ km/h}$$

$$|\vec{V}_{c/p}| = 48 \text{ km/h}$$

(9 marks) Solve for a in the expressions:

$$(a-2) \left( \frac{b-4}{a-2} \right) = (\eta_0 + b)(a-2)$$

$$b-4 = \eta_0(a-2) + b(a-2)$$

$$b-4 = \eta_0 a - 2\eta_0 + ba - 2b$$

$$\eta_0 a + ba = b - 4 + 2\eta_0 + 2b$$

$$a(\eta_0 + b) = 2\eta_0 + 3b - 4$$

$$a = \frac{2\eta_0 + 3b - 4}{\eta_0 + b}$$

$$2 \left( \frac{7a - b(a+2)}{2} - 1 \right) = (a)2$$

$$7a - ba - 2b - 2 = 2a$$

$$7a - ba - 2a = 2 + 2b$$

$$a(5 - b) = 2 + 2b$$

$$a = \frac{2 + 2b}{5 - b}$$

$$7a \left( \frac{1}{a} + \frac{2(a-1)}{7a} \right) = 2 \cdot 7a$$

$$7 + 2a - 2 = 14a$$

$$12a = 5$$

$$a = \frac{5}{12}$$

$$(b+2) \left( \frac{2 \sin(4a+b)}{b+2} \right) = 7(b+2)$$

$$2 \sin(4a+b) = 7b + 14$$

$$\sin(4a+b) = \frac{7b+14}{2}$$

$$4a+b = \sin^{-1} \left( \frac{7b+14}{2} \right)$$

$$4a = \sin^{-1} \left( \frac{7b+14}{2} \right) - b$$

$$a = \frac{1}{4} \sin^{-1} \left( \frac{7b+14}{2} \right) - \frac{b}{4}$$

(5 marks) You bought 8 apples, 2 bananas and 10 carrots and paid \$35. From that you returned 2 apples, 2 bananas and 2 carrots which gave you \$10. You still needed more money so you returned 1 apple and 3 carrots which gave you \$5. How much was the apple?

let:

$a$  = price of an apple  
 $b$  = price of a banana  
 $c$  = price of a carrot.

so

$$8a + 2b + 10c = 35 \quad (1)$$

$$2a + 2b + 2c = 10 \quad (2)$$

$$a + 3c = 5 \quad (3)$$

solve for  $a$  in (3)

$$a = 5 - 3c \quad (3a)$$

sub (3a) into (1)

$$8[5-3c] + 2b + 10c = 35$$

$$40 - 24c + 2b + 10c = 35$$

$$2b - 14c = -5 \quad (1a)$$

sub (3a) into (2)

$$2[5-3c] + 2b + 2c = 10$$

$$10 - 6c + 2b + 2c = 10$$

$$2b - 4c = 0 \quad (2a)$$

solve for  $b$  in (2a)

$$2b = 4c$$

$$b = 2c \quad (2b)$$

sub (2b) into (1a)

$$2[2c] - 14c = -5$$

$$-10c = -5$$

$$c = \frac{1}{2} = 0.50$$

sub into (2b)

$$b = 2\left[\frac{1}{2}\right] = 1$$

sub into (3a)

$$a = 5 - 3\left[\frac{1}{2}\right]$$

$$a = 3.50$$